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SHORTER COMMUNICATIONS 

FINITE ELEMENT ANALYSIS OF COMBINED FREE 
AND FORCED CONVECTION 

S. DEL GIUDICE,* G. COMINI~ and M. D. MIKHAILOV: 

NOMENCLATURE 

A, cross-sectional area, dimensionless ; 6 
L pressure gradient parameter, dimensionless ; 
L I,, direction cosines of the outward normal ; 
6 outward normal ; 
N% Nusselt number, dimensionless ; 
R 1, variables defined by equation (5), 

dimensionless ; 
Ra, Rayleigh number, dimensionless ; 
4 dimensionless temperature ; 
W dimensionless axial velocity; 
x, Y, dimensionless coordinates. 

Subscripts 

m, average value ; 
x, Y, in the x, Y direction. 

tNTRODUCllON 
RECENTLY, in the study of heat conduction with periodic 
boundary conditions, the authors used a complex function 
whose real and imaginary components are related to the 
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FIG. 1. Finite element mesh use.d for the analysis of a 
square geometry. Because of existing symmetry only a right 
angled isosceles sector is considered and natural (i.e. zero 
flux) boundary conditions on OC and OB are assumed. 
Uniform temperatures and zero velocities are assumed on 

BC. 
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@tandard definitions are used for dimensionless quan- 
tities (see for example [2, 3, 5)). 

amplitude and phase angle of temperature oscillations [l]. 
The resulting homogeneous wave equation in complex 
domain was treated as a system of two equations in which 
all quantities are real. Parabolic elements and the Gale&in 
weighted residual process were used in the finite element 
solution. 

Since several heat-transfer processes can be described in 
terms of a Helmoltz wave equation in complex domain, the 
computer code developed in [l] has other utilizations 
besides the solution of periodic heat-conduction problems. 

In this note the technique proposed in Cl] is applied to 
the analysis of combined free and forced convection in 
a fully developed laminar steady flow through vertical 
ducts, with arbitrary cross-sections, under the conditions of 
constant axial heat flux and uniform peripheral wall 
temperatures. 

In the context of the finite element method, a similar 
problem has been dealt with by Nayak and Cheng [2], 
using triangular elements and piecewise linear polynomials 
for the interpolation of temperature and velocity profiles. 
However, their finite element formulation presents severe 
disadvantages, such as the use of the pressure gradient 
value L as an input datum and, apparently, the inability to 
allow for natural (i.e. zero flux) boundary conditions. 
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FIG. 2. Centerline velocity and temperature distributions at 
various Rayleigh numbers in the square duct referred to in 

Fig. 1. 
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Table 1. Comparison between analytical (AN) and finite 
element (FEM) solutions for a square duct at various 

Rayleigh numbers 

Table 2. Calculated Nusselt numbers and pressure gradient 
parameters at various Rayleigh numbers for geometries u 

and h m Fig 3 

Ra 
NU L 

AN C31 FEM AN C31 FEM 

100 3.70 3.70 35.26 35.31 
1000 4.47 4.45 YO.35 90.58 

10000 8.40 8.32 429.8 432.7 

MATHEMATICAL FORMULATION 

The problem is described in [2] by the system of 
equations: . 

a2t a9 - ax2+T-w=o ay 
ah azw 
px,+,-Rat+L=O 

ay 

(1) 

where t and w are dimensionless temperature and velocity 
respectively, x and y are dimensionless coordinates, L is the 
pressure gradient parameter and Ra is the Rayleigh 
number. 

Boundary conditions are: 

t=w=O 

on part of the boundary r, and 

(2) 

(3) 

on part of the boundary r2, (l,,l,,) being the direction 
cosines of the outside normal to the boundary surface (as 
pointed out previously, boundary condition (3) was not 
considered in [2]). 

The average Nusselt number is given by: 

Nu = - 1/4t,, t, = ff wt dA/lI w dA 

when A is the cross-sectional area of the duct. 

(4) 

100 15.08 82.29 15.27 80 40 
1000 15.18 97.16 15.32 95.12 

10000 16.03 231 3 15.75 240.0 

Let the two vartables 

(5) 

be introduced. Multiplying the first equation (1) by Ra”‘, 
subtracting and adding the result from the second equation 
(1) and finally divtding by L leads to the new system of 
equations: 

-- f - - Ra’,=R = 0. 
?s2 ?yl 

(6) 

Boundary condittons wtth the new variables are: 

R = -l/Ra “2. I = 1,‘Ra”2 on fl 

and 

JR ?I 
-=-=Oonf, 
an &l 

The computer program descrtbed m [l] was developed 
for the problem: 

FIG. 3. Finite element meshes used in the analysis of two realistic problems. The existing symmetries are fully 
exploited by assuming natural (i.e. zero flux) boundary conditions where appropriate. Again uniform 

temperatures and zero velocities are assumed on tube walls. 
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subjected to boundary conditions: 

R=R,, I = I, on I-, 

and 

(8) 

k,~l,+k,~l, = qR, 

kxgl,+k,%, = q, 

on r2. (9) 

ay 

Therefore, problem (6), (2’), (3’) is a special case of problem 
(7)-(9). Consequently the computer code described in [l] 
can be used, without modifications, for the analysis of 
combined free and forced convection in a fully developed 
laminar steady flow. 

After the values of R and I are obtained, dimensionless 
temperature and velocity distributions can be computed 
from the formulae : 

RfI 
w=pL, 

2 
(10) 

and the pressure gradient parameter L are compared with 
analytical solution [3]. As it can be seen, isoparametric 
elements yield a good agreement even if a relatively coarse 
mesh is used. 

Temperature and velocity distribution over the square 
centerline are shown in Fig. 2. The results compare 
favourably with the most accurate calculations in [2], 
where a much larger number of nodal points was used. 

To demonstrate the capabilities of the program in 
dealing with complex realistic problems, velocity and 
temperature distributions were computed for the geom- 
etries shown in Fig. 3. The resulting values of the Nusselt 
number Nu and of the pressure gradient parameter L for 
the two geometrical situations are reported in Table 2 as a 
function of the Rayleigh number. 
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INTRODUCTION properties and surface properties [ 1,2]. 
THE TRANSITION boiling heat-transfer mode may be viewed 
as a combination of unstable (vapor) film boiling and 
unstable nucleate boiling alternatively existing at any given 
location on a heated surface. The variation of heat-transfer 
rate with temperature is primarily a result of the change in 
the fraction of time that each boiling mode exists at a given 
location. 

The transition boiling mode is most efficient at the 
boiling crisis point which represents its lower temperature 
boundary. Conditions here may be predicted by a variety of 
correlations. The higher temperature boundary of the 
transition boiling mode takes place at or near the minimum 
heat flux point where a change from transition boiling to 
pure film boiling takes place. Little is known about the 
boundary between transition boiling and film boiling 
except that it is influenced by flow conditions, fluid 

Knowledge of the temperature boundaries of the tran- 
sition boiling mode is important in the prediction of the 
temperature-time history of a hot surface during quenching 
(e.g. during emergency core cooling of a nuclear reactor). 
The purpose of this investigation was to determine whether 
during the quenching process (1) the minimum heat flux 
corresponds to the initiation of liquid contact on a surface, 
and (2) whether the critical heat flux corresponds to the 
initiation of continuous liquid contact [3]. 

This study is believed to be novel in two ways (a) to 
the authors’ knowledge, no other investigator has ever 
measured the boundary between film boiling and transition 
boiling under forced convective conditions, and (b) the 
probe design is uniquely suited to high temperature 
operation. Few relevant studies have been reported in the 
literature. Iida and Kobayasi [4] measured the variation of 


